Source code for openjij.sampler.csqa_sampler

from __future__ import annotations
import numpy as np

import openjij
import openjij as oj
import openjij.cxxjij as cxxjij

from openjij.sampler.sqa_sampler import SQASampler


[docs] class CSQASampler(SQASampler): """Sampler with continuous-time simulated quantum annealing (CSQA) using Hamiltonian. .. math:: H(s) = s H_p + \\Gamma (1-s)\\sum_i \\sigma_i^x where :math:`H_p` is the problem Hamiltonian we want to solve. Args: beta (float): Inverse temperature. gamma (float): Amplitude of quantum fluctuation. schedule (list): schedule list step_num (int): Number of Monte Carlo step. schedule_info (dict): Information about a annealing schedule. num_reads (int): Number of iterations. num_sweeps (int): number of sweeps schedule_info (dict): Information about a annealing schedule. """ def __init__( self, beta=5.0, gamma=1.0, num_sweeps=1000, schedule=None, num_reads=1 ): self._default_params = { "beta": beta, "gamma": gamma, "num_sweeps": num_sweeps, "schedule": schedule, "num_reads": num_reads, } self._params = { "beta": beta, "gamma": gamma, "num_sweeps": num_sweeps, "schedule": schedule, "num_reads": num_reads, } def _get_result(self, system, model): info = {} info["spin_config"] = system.spin_config state = cxxjij.result.get_solution(system) return state, info
[docs] def sample_ising( self, h, J, beta:float=5.0, gamma:float = 1.0, num_sweeps: int=1000, schedule=None, num_reads:int=1, initial_state=None, updater=None, reinitialize_state=True, seed=None, ): """Sampling from the Ising model. Args: h (dict): linear biases J (dict): quadratic biases beta (float, optional): inverse temperature gamma (float, optional): strength of transverse field num_sweeps (int, optional): number of sampling. schedule (list, optional): schedule list num_reads (int, optional): number of iterations initial_state (optional): initial state of spins updater (str, optional): updater algorithm reinitialize_state (bool, optional): Re-initilization at each sampling. Defaults to True. seed (int, optional): Sampling seed. Returns: :class:`openjij.sampler.response.Response`: results Examples: for Ising case:: >>> h = {0: -1, 1: -1, 2: 1, 3: 1} >>> J = {(0, 1): -1, (3, 4): -1} >>> sampler = openjij.CSQASampler() >>> res = sampler.sample_ising(h, J) for QUBO case:: >>> Q = {(0, 0): -1, (1, 1): -1, (2, 2): 1, (3, 3): 1, (4, 4): 1, (0, 1): -1, (3, 4): 1} >>> sampler = openjijj.CSQASampler() >>> res = sampler.sample_qubo(Q) """ # Set default updater if updater is None: updater = "swendsenwang" bqm = oj.model.model.BinaryQuadraticModel( linear=h, quadratic=J, vartype="SPIN", sparse=True ) # Continuous time ising system only supports sparse ising graph ising_graph = bqm.get_cxxjij_ising_graph() self._set_params( beta=beta, gamma=gamma, num_sweeps=num_sweeps, num_reads=num_reads ) self._annealing_schedule_setting( bqm, self._params["beta"], self._params["gamma"], self._params["num_sweeps"], self._params["schedule"], ) # make init state generator -------------------------------- if initial_state is None: def init_generator(): spin_config = np.random.choice([1, -1], len(bqm.variables)) return list(spin_config) else: def init_generator(): return initial_state # -------------------------------- make init state generator # choose updater ------------------------------------------- sqa_system = cxxjij.system.make_continuous_time_ising( init_generator(), ising_graph[0], self._params["gamma"] ) _updater_name = updater.lower().replace("_", "").replace(" ", "") if _updater_name == "swendsenwang": algorithm = cxxjij.algorithm.Algorithm_ContinuousTimeSwendsenWang_run else: raise ValueError('updater is one of "swendsen wang"') # ------------------------------------------- choose updater response = self._cxxjij_sampling( bqm, init_generator, algorithm, sqa_system, reinitialize_state, seed ) response.info["schedule"] = self.schedule_info return response