openjij.sampler.sa_sampler#
Classes#
Sampler with Simulated Annealing (SA). |
Functions#
|
|
|
Make geometric cooling beta schedule. |
Module Contents#
- class openjij.sampler.sa_sampler.SASampler[source]#
Bases:
openjij.sampler.sampler.BaseSampler
Sampler with Simulated Annealing (SA).
- Parameters:
beta_min (
float
) – Minmum beta (inverse temperature). You can overwrite in methods .sample_*.beta_max (
float
) – Maximum beta (inverse temperature). You can overwrite in methods .sample_*.num_reads (
int
) – number of sampling (algorithm) runs. defaults None. You can overwrite in methods .sample_*.num_sweeps (
int
) – number of MonteCarlo steps during SA. defaults None. You can overwrite in methods .sample_*.schedule_info (
dict
) – Information about an annealing schedule.
- Raises:
ValueError – If schedules or variables violate as below.
- not list or numpy.array. –
- not list of tuple (beta – float, step_length : int).
- beta is less than zero. –
- remove_unknown_kwargs(**kwargs) dict[str, Any] #
Remove with warnings any keyword arguments not accepted by the sampler.
Returns: Updated kwargs dict.
Examples
>>> import warnings >>> sampler = dimod.RandomSampler() >>> with warnings.catch_warnings(): ... warnings.filterwarnings('ignore') ... try: ... sampler.remove_unknown_kwargs(num_reads=10, non_param=3) ... except dimod.exceptions.SamplerUnknownArgWarning: ... pass {'num_reads': 10}
- sample(bqm: openj.model.model.BinaryQuadraticModel | dimod.BinaryQuadraticModel, beta_min: float | None = None, beta_max: float | None = None, num_sweeps: int | None = None, num_reads: int | None = None, schedule: list | None = None, initial_state: list | dict | None = None, updater: str | None = None, sparse: bool | None = None, reinitialize_state: bool | None = None, seed: int | None = None) Response [source]#
Sample Ising model.
- Parameters:
beta_min (
float
) – minimal value of inverse temperaturebeta_max (
float
) – maximum value of inverse temperaturenum_sweeps (
int
) – number of sweepsnum_reads (
int
) – number of readsschedule (
list
) – list of inverse temperatureinitial_state (
dict
) – initial stateupdater (
str
) – updater algorithmsparse (
bool
) – use sparse matrix or not.reinitialize_state (
bool
) – if true reinitialize state for each runseed (
int
) – seed for Monte Carlo algorithm
- Returns:
results
- Return type:
Examples
for Ising case:
>>> h = {0: -1, 1: -1, 2: 1, 3: 1} >>> J = {(0, 1): -1, (3, 4): -1} >>> sampler = openj.SASampler() >>> res = sampler.sample_ising(h, J)
for QUBO case:
>>> Q = {(0, 0): -1, (1, 1): -1, (2, 2): 1, (3, 3): 1, (4, 4): 1, (0, 1): -1, (3, 4): 1} >>> sampler = openj.SASampler() >>> res = sampler.sample_qubo(Q)
- sample_hubo(J: dict[tuple, float], vartype: str | None = None, num_sweeps: int = 1000, num_reads: int = 1, num_threads: int = 1, beta_min: float | None = None, beta_max: float | None = None, updater: str = 'METROPOLIS', random_number_engine: str = 'XORSHIFT', seed: int | None = None, temperature_schedule: str = 'GEOMETRIC')[source]#
Sampling from higher order unconstrainted binary optimization.
- Parameters:
J (
dict
) – Interactions.vartype (
str
) – “SPIN” or “BINARY”.num_sweeps (
int, optional
) – The number of sweeps. Defaults to 1000.num_reads (
int, optional
) – The number of reads. Defaults to 1.num_threads (
int, optional
) – The number of threads. Parallelized for each sampling with num_reads > 1. Defaults to 1.beta_min (
float, optional
) – Minimum beta (initial inverse temperature). Defaults to None.beta_max (
float, optional
) – Maximum beta (final inverse temperature). Defaults to None.updater (
str, optional
) – Updater. One can choose “METROPOLIS”, “HEAT_BATH”, or “k-local”. Defaults to “METROPOLIS”.random_number_engine (
str, optional
) – Random number engine. One can choose “XORSHIFT”, “MT”, or “MT_64”. Defaults to “XORSHIFT”.seed (
int, optional
) – seed for Monte Carlo algorithm. Defaults to None.temperature_schedule (
str, optional
) – Temperature schedule. One can choose “LINEAR”, “GEOMETRIC”. Defaults to “GEOMETRIC”.
- Returns:
results
- Return type:
- Examples::
- for Ising case::
>>> sampler = openjij.SASampler() >>> J = {(0,): -1, (0, 1): -1, (0, 1, 2): 1} >>> response = sampler.sample_hubo(J, "SPIN")
- for Binary case::
>>> sampler = ooenjij.SASampler() >>> J = {(0,): -1, (0, 1): -1, (0, 1, 2): 1} >>> response = sampler.sample_hubo(J, "BINARY")
- sample_ising(h, J, **parameters)#
Sample from an Ising model using the implemented sample method.
- Parameters:
- Returns:
results
- Return type:
- sample_qubo(Q, **parameters)#
Sample from a QUBO model using the implemented sample method.
- Parameters:
Q (
dict or numpy.ndarray
) – Coefficients of a quadratic unconstrained binary optimization- Returns:
results
- Return type:
- property parameters#
Parameters as a dict, where keys are keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.
- properties#
Properties as a dict containing any additional information about the sampler.
- openjij.sampler.sa_sampler.geometric_hubo_beta_schedule(sa_system, beta_max, beta_min, num_sweeps)[source]#
- openjij.sampler.sa_sampler.geometric_ising_beta_schedule(cxxgraph: Dense | CSRSparse, beta_max=None, beta_min=None, num_sweeps=1000)[source]#
Make geometric cooling beta schedule.
- Parameters:
cxxgraph (
Union[openjij.cxxjij.graph.Dense, openjij.cxxjij.graph.CSRSparse]
) – Ising graph, must be either Dense or CSRSparse.beta_max (
float, optional
) – [description]. Defaults to None.beta_min (
float, optional
) – [description]. Defaults to None.num_sweeps (
int, optional
) – [description]. Defaults to 1000.
- Returns:
list of cxxjij.utility.ClassicalSchedule, list of beta range [max, min]