openjij.cxxjij.graph#
cxxjij submodule for graph
- class openjij.cxxjij.graph.BinaryPolynomialModel#
Bases:
pybind11_object
__init__(self: openjij.cxxjij.graph.BinaryPolynomialModel, key_list: list[list[Union[int, str, list[Union[int, str]]]]], value_list: list[float]) -> None
- __init__(self: BinaryPolynomialModel, key_list: list[list[int | str | list[int | str]]], value_list: list[float]) None #
- __new__(**kwargs)#
- calculate_energy(self: BinaryPolynomialModel, arg0: list[int]) float #
- get_adjacency_list(self: BinaryPolynomialModel) list[list[int]] #
- get_degree(self: BinaryPolynomialModel) int #
- get_estimated_max_energy_difference(self: BinaryPolynomialModel) float #
- get_estimated_min_energy_difference(self: BinaryPolynomialModel) float #
- get_system_size(self: BinaryPolynomialModel) int #
- class openjij.cxxjij.graph.CSRSparse#
Bases:
Graph
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.CSRSparse, interaction: scipy.sparse.csr_matrix[numpy.float64]) -> None
__init__(self: openjij.cxxjij.graph.CSRSparse, other: openjij.cxxjij.graph.CSRSparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.CSRSparse, interaction: scipy.sparse.csr_matrix[numpy.float64]) -> None
__init__(self: openjij.cxxjij.graph.CSRSparse, other: openjij.cxxjij.graph.CSRSparse) -> None
- __new__(**kwargs)#
- calc_energy(*args, **kwargs)#
Overloaded function.
calc_energy(self: openjij.cxxjij.graph.CSRSparse, spins: numpy.ndarray[numpy.float64[m, 1]]) -> float
calc_energy(self: openjij.cxxjij.graph.CSRSparse, spins: list[int]) -> float
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- get_interactions(self: CSRSparse) csr_matrix[numpy.float64] #
- class openjij.cxxjij.graph.Chimera#
Bases:
Sparse
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.Chimera, num_row: int, num_column: int, init_val: float = 0) -> None
__init__(self: openjij.cxxjij.graph.Chimera, other: openjij.cxxjij.graph.Chimera) -> None
__init__(self: openjij.cxxjij.graph.Chimera, obj: object, num_row: int, num_column: int, init_val: float = 0) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.Chimera, num_row: int, num_column: int, init_val: float = 0) -> None
__init__(self: openjij.cxxjij.graph.Chimera, other: openjij.cxxjij.graph.Chimera) -> None
__init__(self: openjij.cxxjij.graph.Chimera, obj: object, num_row: int, num_column: int, init_val: float = 0) -> None
- __new__(**kwargs)#
- calc_energy(*args, **kwargs)#
Overloaded function.
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: numpy.ndarray[numpy.float64[m, 1]]) -> float
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: list[int]) -> float
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- class openjij.cxxjij.graph.ChimeraDir#
Bases:
pybind11_object
Members:
PLUS_R
MINUS_R
PLUS_C
MINUS_C
IN_0or4
IN_1or5
IN_2or6
IN_3or7
__init__(self: openjij.cxxjij.graph.ChimeraDir, value: int) -> None
- __init__(self: ChimeraDir, value: int) None #
- __new__(**kwargs)#
- IN_0or4 = <ChimeraDir.IN_0or4: 4>#
- IN_1or5 = <ChimeraDir.IN_1or5: 5>#
- IN_2or6 = <ChimeraDir.IN_2or6: 6>#
- IN_3or7 = <ChimeraDir.IN_3or7: 7>#
- MINUS_C = <ChimeraDir.MINUS_C: 3>#
- MINUS_R = <ChimeraDir.MINUS_R: 1>#
- PLUS_C = <ChimeraDir.PLUS_C: 2>#
- PLUS_R = <ChimeraDir.PLUS_R: 0>#
- property name#
- property value#
- class openjij.cxxjij.graph.Dense#
Bases:
Graph
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.Dense, num_spins: int) -> None
__init__(self: openjij.cxxjij.graph.Dense, obj: object) -> None
__init__(self: openjij.cxxjij.graph.Dense, other: openjij.cxxjij.graph.Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.Dense, num_spins: int) -> None
__init__(self: openjij.cxxjij.graph.Dense, obj: object) -> None
__init__(self: openjij.cxxjij.graph.Dense, other: openjij.cxxjij.graph.Dense) -> None
- __new__(**kwargs)#
- calc_energy(*args, **kwargs)#
Overloaded function.
calc_energy(self: openjij.cxxjij.graph.Dense, spins: numpy.ndarray[numpy.float64[m, 1]]) -> float
calc_energy(self: openjij.cxxjij.graph.Dense, spins: list[int]) -> float
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- class openjij.cxxjij.graph.Dir#
Bases:
pybind11_object
Members:
PLUS_R
MINUS_R
PLUS_C
MINUS_C
__init__(self: openjij.cxxjij.graph.Dir, value: int) -> None
- __new__(**kwargs)#
- MINUS_C = <Dir.MINUS_C: 3>#
- MINUS_R = <Dir.MINUS_R: 1>#
- PLUS_C = <Dir.PLUS_C: 2>#
- PLUS_R = <Dir.PLUS_R: 0>#
- property name#
- property value#
- class openjij.cxxjij.graph.Graph#
Bases:
pybind11_object
__init__(self: openjij.cxxjij.graph.Graph, num_spins: int) -> None
- __new__(**kwargs)#
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- class openjij.cxxjij.graph.IsingPolynomialModel#
Bases:
pybind11_object
__init__(self: openjij.cxxjij.graph.IsingPolynomialModel, key_list: list[list[Union[int, str, list[Union[int, str]]]]], value_list: list[float]) -> None
- __init__(self: IsingPolynomialModel, key_list: list[list[int | str | list[int | str]]], value_list: list[float]) None #
- __new__(**kwargs)#
- calculate_energy(self: IsingPolynomialModel, arg0: list[int]) float #
- get_adjacency_list(self: IsingPolynomialModel) list[list[int]] #
- get_degree(self: IsingPolynomialModel) int #
- get_estimated_max_energy_difference(self: IsingPolynomialModel) float #
- get_estimated_min_energy_difference(self: IsingPolynomialModel) float #
- get_system_size(self: IsingPolynomialModel) int #
- class openjij.cxxjij.graph.Polynomial#
Bases:
Graph
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.Polynomial, num_variables: int) -> None
__init__(self: openjij.cxxjij.graph.Polynomial, obj: object) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.Polynomial, num_variables: int) -> None
__init__(self: openjij.cxxjij.graph.Polynomial, obj: object) -> None
- __new__(**kwargs)#
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- get_num_interactions(self: Polynomial) int #
- get_polynomial(self: Polynomial) dict #
- class openjij.cxxjij.graph.Sparse#
Bases:
Graph
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.Sparse, num_spins: int, num_edges: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, num_spins: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, obj: object, num_edges: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, obj: object) -> None
__init__(self: openjij.cxxjij.graph.Sparse, other: openjij.cxxjij.graph.Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.Sparse, num_spins: int, num_edges: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, num_spins: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, obj: object, num_edges: int) -> None
__init__(self: openjij.cxxjij.graph.Sparse, obj: object) -> None
__init__(self: openjij.cxxjij.graph.Sparse, other: openjij.cxxjij.graph.Sparse) -> None
- __new__(**kwargs)#
- calc_energy(*args, **kwargs)#
Overloaded function.
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: numpy.ndarray[numpy.float64[m, 1]]) -> float
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: list[int]) -> float
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]
- class openjij.cxxjij.graph.Square#
Bases:
Sparse
__init__(*args, **kwargs) Overloaded function.
__init__(self: openjij.cxxjij.graph.Square, num_row: int, num_column: int, init_val: float = 0) -> None
__init__(self: openjij.cxxjij.graph.Square, other: openjij.cxxjij.graph.Square) -> None
__init__(self: openjij.cxxjij.graph.Square, obj: object, num_row: int, num_column: int, init_val: float = 0) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: openjij.cxxjij.graph.Square, num_row: int, num_column: int, init_val: float = 0) -> None
__init__(self: openjij.cxxjij.graph.Square, other: openjij.cxxjij.graph.Square) -> None
__init__(self: openjij.cxxjij.graph.Square, obj: object, num_row: int, num_column: int, init_val: float = 0) -> None
- __new__(**kwargs)#
- calc_energy(*args, **kwargs)#
Overloaded function.
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: numpy.ndarray[numpy.float64[m, 1]]) -> float
calc_energy(self: openjij.cxxjij.graph.Sparse, spins: list[int]) -> float
- gen_binary(*args, **kwargs)#
Overloaded function.
gen_binary(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_binary(self: openjij.cxxjij.graph.Graph) -> list[int]
- gen_spin(*args, **kwargs)#
Overloaded function.
gen_spin(self: openjij.cxxjij.graph.Graph, seed: int) -> list[int]
gen_spin(self: openjij.cxxjij.graph.Graph) -> list[int]