cimod.cxxcimod
#
C++ library for a binary quadratic model
- class cimod.cxxcimod.BinaryPolynomialModel#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, polynomial: Dict[List[int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, keys: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, variables: List[int], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, polynomial: Dict[List[int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, keys: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel, variables: List[int], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryPolynomialModel, key: List[int], value: float, vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) None #
- add_interactions_from(*args, **kwargs)#
Overloaded function.
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel, keys: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel, polynomial: Dict[List[int], float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
- add_offset(self: cimod.cxxcimod.BinaryPolynomialModel, offset: float) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryPolynomialModel
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel, vartype: cimod.cxxcimod.Vartype) -> None
- clear(self: cimod.cxxcimod.BinaryPolynomialModel) None #
- empty(self: cimod.cxxcimod.BinaryPolynomialModel, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryPolynomialModel #
- energies(*args, **kwargs)#
Overloaded function.
energies(self: cimod.cxxcimod.BinaryPolynomialModel, samples: List[Dict[int, int]]) -> List[float]
energies(self: cimod.cxxcimod.BinaryPolynomialModel, samples: List[List[int]]) -> List[float]
- energy(*args, **kwargs)#
Overloaded function.
energy(self: cimod.cxxcimod.BinaryPolynomialModel, sample: Dict[int, int], omp_flag: bool = True) -> float
energy(self: cimod.cxxcimod.BinaryPolynomialModel, sample: List[int], omp_flag: bool = True) -> float
- static from_hising(*args, **kwargs)#
Overloaded function.
from_hising(polynomial: Dict[List[int], float]) -> cimod.cxxcimod.BinaryPolynomialModel
from_hising(keys: List[List[int]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel
- static from_hubo(*args, **kwargs)#
Overloaded function.
from_hubo(polynomial: Dict[List[int], float]) -> cimod.cxxcimod.BinaryPolynomialModel
from_hubo(keys: List[List[int]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel
- static from_serializable(input: object) cimod.cxxcimod.BinaryPolynomialModel #
- get_degree(self: cimod.cxxcimod.BinaryPolynomialModel) int #
- get_key_list(self: cimod.cxxcimod.BinaryPolynomialModel) List[List[int]] #
- get_num_interactions(self: cimod.cxxcimod.BinaryPolynomialModel) int #
- get_num_variables(self: cimod.cxxcimod.BinaryPolynomialModel) int #
- get_offset(self: cimod.cxxcimod.BinaryPolynomialModel) float #
- get_polynomial(*args, **kwargs)#
Overloaded function.
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel) -> dict
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel, key: List[int]) -> float
- get_value_list(self: cimod.cxxcimod.BinaryPolynomialModel) List[float] #
- get_variables(self: cimod.cxxcimod.BinaryPolynomialModel) List[int] #
- get_variables_to_integers(*args, **kwargs)#
Overloaded function.
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel) -> Dict[int, int]
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel, v: int) -> int
- get_vartype(self: cimod.cxxcimod.BinaryPolynomialModel) cimod.cxxcimod.Vartype #
- has_variable(self: cimod.cxxcimod.BinaryPolynomialModel, v: int) bool #
- indices(self: cimod.cxxcimod.BinaryPolynomialModel) List[int] #
- normalize(self: cimod.cxxcimod.BinaryPolynomialModel, range: Tuple[float, float] = (1.0, 1.0), ignored_interactions: List[List[int]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryPolynomialModel, key: List[int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel, keys: List[List[int]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryPolynomialModel) None #
- remove_variable(self: cimod.cxxcimod.BinaryPolynomialModel, v: int) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryPolynomialModel, variables: List[int]) None #
- scale(self: cimod.cxxcimod.BinaryPolynomialModel, scalar: float, ignored_interactions: List[List[int]] = [], ignored_offset: bool = False) None #
- to_hising(self: cimod.cxxcimod.BinaryPolynomialModel) dict #
- to_hubo(self: cimod.cxxcimod.BinaryPolynomialModel) dict #
- to_serializable(self: cimod.cxxcimod.BinaryPolynomialModel) object #
- class cimod.cxxcimod.BinaryPolynomialModel_str#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, polynomial: Dict[List[str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, keys: List[List[str]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, variables: List[str], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, polynomial: Dict[List[str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, keys: List[List[str]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_str, variables: List[str], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_str, key: List[str], value: float, vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) None #
- add_interactions_from(*args, **kwargs)#
Overloaded function.
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_str, keys: List[List[str]], values: List[float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_str, polynomial: Dict[List[str], float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
- add_offset(self: cimod.cxxcimod.BinaryPolynomialModel_str, offset: float) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_str, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryPolynomialModel_str
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_str, vartype: cimod.cxxcimod.Vartype) -> None
- clear(self: cimod.cxxcimod.BinaryPolynomialModel_str) None #
- empty(self: cimod.cxxcimod.BinaryPolynomialModel_str, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryPolynomialModel_str #
- energies(*args, **kwargs)#
Overloaded function.
energies(self: cimod.cxxcimod.BinaryPolynomialModel_str, samples: List[Dict[str, int]]) -> List[float]
energies(self: cimod.cxxcimod.BinaryPolynomialModel_str, samples: List[List[int]]) -> List[float]
- energy(*args, **kwargs)#
Overloaded function.
energy(self: cimod.cxxcimod.BinaryPolynomialModel_str, sample: Dict[str, int], omp_flag: bool = True) -> float
energy(self: cimod.cxxcimod.BinaryPolynomialModel_str, sample: List[int], omp_flag: bool = True) -> float
- static from_hising(*args, **kwargs)#
Overloaded function.
from_hising(polynomial: Dict[List[str], float]) -> cimod.cxxcimod.BinaryPolynomialModel_str
from_hising(keys: List[List[str]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_str
- static from_hubo(*args, **kwargs)#
Overloaded function.
from_hubo(polynomial: Dict[List[str], float]) -> cimod.cxxcimod.BinaryPolynomialModel_str
from_hubo(keys: List[List[str]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_str
- static from_serializable(input: object) cimod.cxxcimod.BinaryPolynomialModel_str #
- get_degree(self: cimod.cxxcimod.BinaryPolynomialModel_str) int #
- get_key_list(self: cimod.cxxcimod.BinaryPolynomialModel_str) List[List[str]] #
- get_num_interactions(self: cimod.cxxcimod.BinaryPolynomialModel_str) int #
- get_num_variables(self: cimod.cxxcimod.BinaryPolynomialModel_str) int #
- get_offset(self: cimod.cxxcimod.BinaryPolynomialModel_str) float #
- get_polynomial(*args, **kwargs)#
Overloaded function.
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_str) -> dict
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_str, key: List[str]) -> float
- get_value_list(self: cimod.cxxcimod.BinaryPolynomialModel_str) List[float] #
- get_variables(self: cimod.cxxcimod.BinaryPolynomialModel_str) List[str] #
- get_variables_to_integers(*args, **kwargs)#
Overloaded function.
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_str) -> Dict[str, int]
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_str, v: str) -> int
- get_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_str) cimod.cxxcimod.Vartype #
- has_variable(self: cimod.cxxcimod.BinaryPolynomialModel_str, v: str) bool #
- indices(self: cimod.cxxcimod.BinaryPolynomialModel_str) List[str] #
- normalize(self: cimod.cxxcimod.BinaryPolynomialModel_str, range: Tuple[float, float] = (1.0, 1.0), ignored_interactions: List[List[str]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_str, key: List[str]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_str, keys: List[List[str]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryPolynomialModel_str) None #
- remove_variable(self: cimod.cxxcimod.BinaryPolynomialModel_str, v: str) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryPolynomialModel_str, variables: List[str]) None #
- scale(self: cimod.cxxcimod.BinaryPolynomialModel_str, scalar: float, ignored_interactions: List[List[str]] = [], ignored_offset: bool = False) None #
- to_hising(self: cimod.cxxcimod.BinaryPolynomialModel_str) dict #
- to_hubo(self: cimod.cxxcimod.BinaryPolynomialModel_str) dict #
- to_serializable(self: cimod.cxxcimod.BinaryPolynomialModel_str) object #
- class cimod.cxxcimod.BinaryPolynomialModel_tuple2#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, polynomial: Dict[List[Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, keys: List[List[Tuple[int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, variables: List[Tuple[int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, polynomial: Dict[List[Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, keys: List[List[Tuple[int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, variables: List[Tuple[int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, key: List[Tuple[int, int]], value: float, vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) None #
- add_interactions_from(*args, **kwargs)#
Overloaded function.
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, keys: List[List[Tuple[int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, polynomial: Dict[List[Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
- add_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, offset: float) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryPolynomialModel_tuple2
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, vartype: cimod.cxxcimod.Vartype) -> None
- clear(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) None #
- empty(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryPolynomialModel_tuple2 #
- energies(*args, **kwargs)#
Overloaded function.
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, samples: List[Dict[Tuple[int, int], int]]) -> List[float]
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, samples: List[List[int]]) -> List[float]
- energy(*args, **kwargs)#
Overloaded function.
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, sample: Dict[Tuple[int, int], int], omp_flag: bool = True) -> float
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, sample: List[int], omp_flag: bool = True) -> float
- static from_hising(*args, **kwargs)#
Overloaded function.
from_hising(polynomial: Dict[List[Tuple[int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple2
from_hising(keys: List[List[Tuple[int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple2
- static from_hubo(*args, **kwargs)#
Overloaded function.
from_hubo(polynomial: Dict[List[Tuple[int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple2
from_hubo(keys: List[List[Tuple[int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple2
- static from_serializable(input: object) cimod.cxxcimod.BinaryPolynomialModel_tuple2 #
- get_degree(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) int #
- get_key_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) List[List[Tuple[int, int]]] #
- get_num_interactions(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) int #
- get_num_variables(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) int #
- get_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) float #
- get_polynomial(*args, **kwargs)#
Overloaded function.
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) -> dict
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, key: List[Tuple[int, int]]) -> float
- get_value_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) List[float] #
- get_variables(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) List[Tuple[int, int]] #
- get_variables_to_integers(*args, **kwargs)#
Overloaded function.
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) -> Dict[Tuple[int, int], int]
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, v: Tuple[int, int]) -> int
- get_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) cimod.cxxcimod.Vartype #
- has_variable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, v: Tuple[int, int]) bool #
- indices(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) List[Tuple[int, int]] #
- normalize(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, range: Tuple[float, float] = (1.0, 1.0), ignored_interactions: List[List[Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, key: List[Tuple[int, int]]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, keys: List[List[Tuple[int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) None #
- remove_variable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, v: Tuple[int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, variables: List[Tuple[int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2, scalar: float, ignored_interactions: List[List[Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- to_hising(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) dict #
- to_hubo(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) dict #
- to_serializable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple2) object #
- class cimod.cxxcimod.BinaryPolynomialModel_tuple3#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, polynomial: Dict[List[Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, keys: List[List[Tuple[int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, variables: List[Tuple[int, int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, polynomial: Dict[List[Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, keys: List[List[Tuple[int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, variables: List[Tuple[int, int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, key: List[Tuple[int, int, int]], value: float, vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) None #
- add_interactions_from(*args, **kwargs)#
Overloaded function.
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, keys: List[List[Tuple[int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, polynomial: Dict[List[Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
- add_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, offset: float) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryPolynomialModel_tuple3
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, vartype: cimod.cxxcimod.Vartype) -> None
- clear(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) None #
- empty(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryPolynomialModel_tuple3 #
- energies(*args, **kwargs)#
Overloaded function.
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, samples: List[Dict[Tuple[int, int, int], int]]) -> List[float]
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, samples: List[List[int]]) -> List[float]
- energy(*args, **kwargs)#
Overloaded function.
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, sample: Dict[Tuple[int, int, int], int], omp_flag: bool = True) -> float
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, sample: List[int], omp_flag: bool = True) -> float
- static from_hising(*args, **kwargs)#
Overloaded function.
from_hising(polynomial: Dict[List[Tuple[int, int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple3
from_hising(keys: List[List[Tuple[int, int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple3
- static from_hubo(*args, **kwargs)#
Overloaded function.
from_hubo(polynomial: Dict[List[Tuple[int, int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple3
from_hubo(keys: List[List[Tuple[int, int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple3
- static from_serializable(input: object) cimod.cxxcimod.BinaryPolynomialModel_tuple3 #
- get_degree(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) int #
- get_key_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) List[List[Tuple[int, int, int]]] #
- get_num_interactions(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) int #
- get_num_variables(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) int #
- get_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) float #
- get_polynomial(*args, **kwargs)#
Overloaded function.
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) -> dict
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, key: List[Tuple[int, int, int]]) -> float
- get_value_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) List[float] #
- get_variables(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) List[Tuple[int, int, int]] #
- get_variables_to_integers(*args, **kwargs)#
Overloaded function.
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) -> Dict[Tuple[int, int, int], int]
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, v: Tuple[int, int, int]) -> int
- get_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) cimod.cxxcimod.Vartype #
- indices(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) List[Tuple[int, int, int]] #
- normalize(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, range: Tuple[float, float] = (1.0, 1.0), ignored_interactions: List[List[Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, key: List[Tuple[int, int, int]]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, keys: List[List[Tuple[int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, variables: List[Tuple[int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3, scalar: float, ignored_interactions: List[List[Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- to_hising(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) dict #
- to_hubo(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) dict #
- to_serializable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple3) object #
- class cimod.cxxcimod.BinaryPolynomialModel_tuple4#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, polynomial: Dict[List[Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, keys: List[List[Tuple[int, int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, variables: List[Tuple[int, int, int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, polynomial: Dict[List[Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, keys: List[List[Tuple[int, int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, variables: List[Tuple[int, int, int, int]], keys_distance: List[List[int]], values: List[float], vartype: cimod.cxxcimod.Vartype) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, key: List[Tuple[int, int, int, int]], value: float, vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) None #
- add_interactions_from(*args, **kwargs)#
Overloaded function.
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, keys: List[List[Tuple[int, int, int, int]]], values: List[float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
add_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, polynomial: Dict[List[Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype = <Vartype.NONE: -1>) -> None
- add_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, offset: float) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryPolynomialModel_tuple4
change_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, vartype: cimod.cxxcimod.Vartype) -> None
- clear(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) None #
- empty(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryPolynomialModel_tuple4 #
- energies(*args, **kwargs)#
Overloaded function.
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, samples: List[Dict[Tuple[int, int, int, int], int]]) -> List[float]
energies(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, samples: List[List[int]]) -> List[float]
- energy(*args, **kwargs)#
Overloaded function.
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, sample: Dict[Tuple[int, int, int, int], int], omp_flag: bool = True) -> float
energy(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, sample: List[int], omp_flag: bool = True) -> float
- static from_hising(*args, **kwargs)#
Overloaded function.
from_hising(polynomial: Dict[List[Tuple[int, int, int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple4
from_hising(keys: List[List[Tuple[int, int, int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple4
- static from_hubo(*args, **kwargs)#
Overloaded function.
from_hubo(polynomial: Dict[List[Tuple[int, int, int, int]], float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple4
from_hubo(keys: List[List[Tuple[int, int, int, int]]], value: List[float]) -> cimod.cxxcimod.BinaryPolynomialModel_tuple4
- static from_serializable(input: object) cimod.cxxcimod.BinaryPolynomialModel_tuple4 #
- get_degree(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) int #
- get_key_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) List[List[Tuple[int, int, int, int]]] #
- get_num_interactions(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) int #
- get_num_variables(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) int #
- get_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) float #
- get_polynomial(*args, **kwargs)#
Overloaded function.
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) -> dict
get_polynomial(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, key: List[Tuple[int, int, int, int]]) -> float
- get_value_list(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) List[float] #
- get_variables_to_integers(*args, **kwargs)#
Overloaded function.
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) -> Dict[Tuple[int, int, int, int], int]
get_variables_to_integers(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, v: Tuple[int, int, int, int]) -> int
- get_vartype(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) cimod.cxxcimod.Vartype #
- has_variable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, v: Tuple[int, int, int, int]) bool #
- normalize(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, range: Tuple[float, float] = (1.0, 1.0), ignored_interactions: List[List[Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, key: List[Tuple[int, int, int, int]]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, keys: List[List[Tuple[int, int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) None #
- remove_variable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, v: Tuple[int, int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, variables: List[Tuple[int, int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4, scalar: float, ignored_interactions: List[List[Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- to_hising(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) dict #
- to_hubo(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) dict #
- to_serializable(self: cimod.cxxcimod.BinaryPolynomialModel_tuple4) object #
- class cimod.cxxcimod.BinaryQuadraticModel_Dense#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_Dense) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, u: int, v: int, bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, quadratic: Dict[Tuple[int, int], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, v: int, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, linear: Dict[int, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_Dense
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_Dense #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, samples_like: List[Dict[int, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, sample: Dict[int, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, v: int, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, fixed: List[Tuple[int, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, v: int) None #
- static from_ising(h: Dict[int, float], J: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Dense #
- static from_qubo(Q: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Dense #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_Dense #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, arg0: int) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) -> Dict[int, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, arg0: int, arg1: int) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) -> Dict[Tuple[int, int], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) List[int] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) numpy.ndarray[numpy.float64[m, n]] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, u: int, v: int) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, interactions: List[Tuple[int, int]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, v: int) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, variables: List[int]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_Dense, scalar: float, ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) Tuple[Dict[int, float], Dict[Tuple[int, int], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) Tuple[Dict[Tuple[int, int], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_Dense) object #
- class cimod.cxxcimod.BinaryQuadraticModel_Dict#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_Dict) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_Dict) -> None
- __new__(**kwargs)#
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, quadratic: Dict[Tuple[int, int], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, v: int, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, linear: Dict[int, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_Dict
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_Dict #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, samples_like: List[Dict[int, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, sample: Dict[int, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, v: int, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, fixed: List[Tuple[int, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, v: int) None #
- static from_ising(h: Dict[int, float], J: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Dict #
- static from_qubo(Q: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Dict #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_Dict #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, arg0: int) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) -> Dict[int, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, arg0: int, arg1: int) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) -> Dict[Tuple[int, int], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) List[int] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) cimod.cxxcimod.Vartype #
- interaction_matrix(*args, **kwargs)#
Overloaded function.
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) -> numpy.ndarray[numpy.float64[m, n]]
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, arg0: List[int]) -> numpy.ndarray[numpy.float64[m, n]]
- length(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, u: int, v: int) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, interactions: List[Tuple[int, int]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, v: int) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, variables: List[int]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_Dict, scalar: float, ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) Tuple[Dict[int, float], Dict[Tuple[int, int], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) Tuple[Dict[Tuple[int, int], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_Dict) object #
- class cimod.cxxcimod.BinaryQuadraticModel_Sparse#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, linear: Dict[int, float], quadratic: Dict[Tuple[int, int], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[int], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_Sparse) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, u: int, v: int, bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, quadratic: Dict[Tuple[int, int], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, v: int, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, linear: Dict[int, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_Sparse
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_Sparse #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, samples_like: List[Dict[int, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, sample: Dict[int, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, v: int, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, fixed: List[Tuple[int, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, v: int) None #
- static from_ising(h: Dict[int, float], J: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Sparse #
- static from_qubo(Q: Dict[Tuple[int, int], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_Sparse #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_Sparse #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, arg0: int) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) -> Dict[int, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, arg0: int, arg1: int) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) -> Dict[Tuple[int, int], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) List[int] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) scipy.sparse.csr_matrix[numpy.float64] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, u: int, v: int) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, interactions: List[Tuple[int, int]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, v: int) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, variables: List[int]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse, scalar: float, ignored_variables: List[int] = [], ignored_interactions: List[Tuple[int, int]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) Tuple[Dict[int, float], Dict[Tuple[int, int], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) Tuple[Dict[Tuple[int, int], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_Sparse) object #
- class cimod.cxxcimod.BinaryQuadraticModel_str_Dense#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, u: str, v: str, bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, quadratic: Dict[Tuple[str, str], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, v: str, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, linear: Dict[str, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_str_Dense
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_str_Dense #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, samples_like: List[Dict[str, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, sample: Dict[str, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, v: str, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, fixed: List[Tuple[str, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, v: str) None #
- static from_ising(h: Dict[str, float], J: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Dense #
- static from_qubo(Q: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Dense #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_str_Dense #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, arg0: str) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) -> Dict[str, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, arg0: str, arg1: str) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) -> Dict[Tuple[str, str], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) List[str] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) numpy.ndarray[numpy.float64[m, n]] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, u: str, v: str) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, interactions: List[Tuple[str, str]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, v: str) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, variables: List[str]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense, scalar: float, ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) Tuple[Dict[str, float], Dict[Tuple[str, str], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) Tuple[Dict[Tuple[str, str], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dense) object #
- class cimod.cxxcimod.BinaryQuadraticModel_str_Dict#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, u: str, v: str, bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, quadratic: Dict[Tuple[str, str], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, v: str, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, linear: Dict[str, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_str_Dict
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_str_Dict #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, samples_like: List[Dict[str, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, sample: Dict[str, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, v: str, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, fixed: List[Tuple[str, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, v: str) None #
- static from_ising(h: Dict[str, float], J: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Dict #
- static from_qubo(Q: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Dict #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_str_Dict #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, arg0: str) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) -> Dict[str, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, arg0: str, arg1: str) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) -> Dict[Tuple[str, str], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) List[str] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) cimod.cxxcimod.Vartype #
- interaction_matrix(*args, **kwargs)#
Overloaded function.
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) -> numpy.ndarray[numpy.float64[m, n]]
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, arg0: List[str]) -> numpy.ndarray[numpy.float64[m, n]]
- length(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, u: str, v: str) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, interactions: List[Tuple[str, str]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, v: str) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, variables: List[str]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict, scalar: float, ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) Tuple[Dict[str, float], Dict[Tuple[str, str], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) Tuple[Dict[Tuple[str, str], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Dict) object #
- class cimod.cxxcimod.BinaryQuadraticModel_str_Sparse#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, linear: Dict[str, float], quadratic: Dict[Tuple[str, str], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[str], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, u: str, v: str, bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, quadratic: Dict[Tuple[str, str], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, v: str, bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, linear: Dict[str, float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_str_Sparse
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_str_Sparse #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, samples_like: List[Dict[str, int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, sample: Dict[str, int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, v: str, value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, fixed: List[Tuple[str, int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, v: str) None #
- static from_ising(h: Dict[str, float], J: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Sparse #
- static from_qubo(Q: Dict[Tuple[str, str], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_str_Sparse #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_str_Sparse #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, arg0: str) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) -> Dict[str, float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, arg0: str, arg1: str) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) -> Dict[Tuple[str, str], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) List[str] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) scipy.sparse.csr_matrix[numpy.float64] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, u: str, v: str) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, interactions: List[Tuple[str, str]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, v: str) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, variables: List[str]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse, scalar: float, ignored_variables: List[str] = [], ignored_interactions: List[Tuple[str, str]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) Tuple[Dict[str, float], Dict[Tuple[str, str], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) Tuple[Dict[Tuple[str, str], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_str_Sparse) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, u: Tuple[int, int], v: Tuple[int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, v: Tuple[int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, linear: Dict[Tuple[int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, samples_like: List[Dict[Tuple[int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, sample: Dict[Tuple[int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, v: Tuple[int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, fixed: List[Tuple[Tuple[int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, v: Tuple[int, int]) None #
- static from_ising(h: Dict[Tuple[int, int], float], J: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, arg0: Tuple[int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) -> Dict[Tuple[int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, arg0: Tuple[int, int], arg1: Tuple[int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) -> Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) List[Tuple[int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) numpy.ndarray[numpy.float64[m, n]] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, u: Tuple[int, int], v: Tuple[int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, v: Tuple[int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, variables: List[Tuple[int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense, scalar: float, ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) Tuple[Dict[Tuple[int, int], float], Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) Tuple[Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dense) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, u: Tuple[int, int], v: Tuple[int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, v: Tuple[int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, linear: Dict[Tuple[int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, samples_like: List[Dict[Tuple[int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, sample: Dict[Tuple[int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, v: Tuple[int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, fixed: List[Tuple[Tuple[int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, v: Tuple[int, int]) None #
- static from_ising(h: Dict[Tuple[int, int], float], J: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, arg0: Tuple[int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) -> Dict[Tuple[int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, arg0: Tuple[int, int], arg1: Tuple[int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) -> Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) List[Tuple[int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) cimod.cxxcimod.Vartype #
- interaction_matrix(*args, **kwargs)#
Overloaded function.
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) -> numpy.ndarray[numpy.float64[m, n]]
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, arg0: List[Tuple[int, int]]) -> numpy.ndarray[numpy.float64[m, n]]
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, u: Tuple[int, int], v: Tuple[int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, v: Tuple[int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, variables: List[Tuple[int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict, scalar: float, ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) Tuple[Dict[Tuple[int, int], float], Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) Tuple[Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Dict) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, linear: Dict[Tuple[int, int], float], quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, u: Tuple[int, int], v: Tuple[int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, quadratic: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, v: Tuple[int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, linear: Dict[Tuple[int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, samples_like: List[Dict[Tuple[int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, sample: Dict[Tuple[int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, v: Tuple[int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, fixed: List[Tuple[Tuple[int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, v: Tuple[int, int]) None #
- static from_ising(h: Dict[Tuple[int, int], float], J: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, arg0: Tuple[int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) -> Dict[Tuple[int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, arg0: Tuple[int, int], arg1: Tuple[int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) -> Dict[Tuple[Tuple[int, int], Tuple[int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) List[Tuple[int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) scipy.sparse.csr_matrix[numpy.float64] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, u: Tuple[int, int], v: Tuple[int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, v: Tuple[int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, variables: List[Tuple[int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse, scalar: float, ignored_variables: List[Tuple[int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int], Tuple[int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) Tuple[Dict[Tuple[int, int], float], Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) Tuple[Dict[Tuple[Tuple[int, int], Tuple[int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple2_Sparse) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, u: Tuple[int, int, int], v: Tuple[int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, v: Tuple[int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, linear: Dict[Tuple[int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, samples_like: List[Dict[Tuple[int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, sample: Dict[Tuple[int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, v: Tuple[int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, fixed: List[Tuple[Tuple[int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, v: Tuple[int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int], float], J: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, arg0: Tuple[int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) -> Dict[Tuple[int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, arg0: Tuple[int, int, int], arg1: Tuple[int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) -> Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) List[Tuple[int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) numpy.ndarray[numpy.float64[m, n]] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, u: Tuple[int, int, int], v: Tuple[int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, v: Tuple[int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, variables: List[Tuple[int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense, scalar: float, ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) Tuple[Dict[Tuple[int, int, int], float], Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) Tuple[Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dense) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, u: Tuple[int, int, int], v: Tuple[int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, v: Tuple[int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, linear: Dict[Tuple[int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, samples_like: List[Dict[Tuple[int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, sample: Dict[Tuple[int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, v: Tuple[int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, fixed: List[Tuple[Tuple[int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, v: Tuple[int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int], float], J: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, arg0: Tuple[int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) -> Dict[Tuple[int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, arg0: Tuple[int, int, int], arg1: Tuple[int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) -> Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) List[Tuple[int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) cimod.cxxcimod.Vartype #
- interaction_matrix(*args, **kwargs)#
Overloaded function.
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) -> numpy.ndarray[numpy.float64[m, n]]
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, arg0: List[Tuple[int, int, int]]) -> numpy.ndarray[numpy.float64[m, n]]
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, u: Tuple[int, int, int], v: Tuple[int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, v: Tuple[int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, variables: List[Tuple[int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict, scalar: float, ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) Tuple[Dict[Tuple[int, int, int], float], Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) Tuple[Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Dict) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, linear: Dict[Tuple[int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, u: Tuple[int, int, int], v: Tuple[int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, quadratic: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, v: Tuple[int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, linear: Dict[Tuple[int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, samples_like: List[Dict[Tuple[int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, sample: Dict[Tuple[int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, v: Tuple[int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, fixed: List[Tuple[Tuple[int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, v: Tuple[int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int], float], J: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, arg0: Tuple[int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) -> Dict[Tuple[int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, arg0: Tuple[int, int, int], arg1: Tuple[int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) -> Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) List[Tuple[int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) scipy.sparse.csr_matrix[numpy.float64] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, u: Tuple[int, int, int], v: Tuple[int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, v: Tuple[int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, variables: List[Tuple[int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse, scalar: float, ignored_variables: List[Tuple[int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int], Tuple[int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) Tuple[Dict[Tuple[int, int, int], float], Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) Tuple[Dict[Tuple[Tuple[int, int, int], Tuple[int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple3_Sparse) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, v: Tuple[int, int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, linear: Dict[Tuple[int, int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, samples_like: List[Dict[Tuple[int, int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, sample: Dict[Tuple[int, int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, v: Tuple[int, int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, fixed: List[Tuple[Tuple[int, int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, v: Tuple[int, int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int, int], float], J: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, arg0: Tuple[int, int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) -> Dict[Tuple[int, int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, arg0: Tuple[int, int, int, int], arg1: Tuple[int, int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) -> Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) List[Tuple[int, int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) numpy.ndarray[numpy.float64[m, n]] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, v: Tuple[int, int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, variables: List[Tuple[int, int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense, scalar: float, ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) Tuple[Dict[Tuple[int, int, int, int], float], Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) Tuple[Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dense) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, v: Tuple[int, int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, linear: Dict[Tuple[int, int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, samples_like: List[Dict[Tuple[int, int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, sample: Dict[Tuple[int, int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, v: Tuple[int, int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, fixed: List[Tuple[Tuple[int, int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, v: Tuple[int, int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int, int], float], J: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, arg0: Tuple[int, int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) -> Dict[Tuple[int, int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, arg0: Tuple[int, int, int, int], arg1: Tuple[int, int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) -> Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) List[Tuple[int, int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) cimod.cxxcimod.Vartype #
- interaction_matrix(*args, **kwargs)#
Overloaded function.
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) -> numpy.ndarray[numpy.float64[m, n]]
interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, arg0: List[Tuple[int, int, int, int]]) -> numpy.ndarray[numpy.float64[m, n]]
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, v: Tuple[int, int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, variables: List[Tuple[int, int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict, scalar: float, ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) Tuple[Dict[Tuple[int, int, int, int], float], Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) Tuple[Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Dict) object #
- class cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse#
__init__(*args, **kwargs) Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) -> None
- __init__(*args, **kwargs)#
Overloaded function.
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, linear: Dict[Tuple[int, int, int, int], float], quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype, fix_format: bool = True) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], offset: float, vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, mat: scipy.sparse.csr_matrix[numpy.float64], labels_vec: List[Tuple[int, int, int, int]], vartype: cimod.cxxcimod.Vartype) -> None
__init__(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, bqm: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) -> None
- __new__(**kwargs)#
- add_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int], bias: float) None #
- add_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, quadratic: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]) None #
- add_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, offset: float) None #
- add_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, v: Tuple[int, int, int, int], bias: float) None #
- add_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, linear: Dict[Tuple[int, int, int, int], float]) None #
- change_vartype(*args, **kwargs)#
Overloaded function.
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, vartype: cimod.cxxcimod.Vartype) -> None
change_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, vartype: cimod.cxxcimod.Vartype, inplace: bool) -> cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse
- empty(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, vartype: cimod.cxxcimod.Vartype) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse #
- energies(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, samples_like: List[Dict[Tuple[int, int, int, int], int]]) List[float] #
- energy(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, sample: Dict[Tuple[int, int, int, int], int]) float #
- fix_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, v: Tuple[int, int, int, int], value: int) None #
- fix_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, fixed: List[Tuple[Tuple[int, int, int, int], int]]) None #
- flip_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, v: Tuple[int, int, int, int]) None #
- static from_ising(h: Dict[Tuple[int, int, int, int], float], J: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse #
- static from_qubo(Q: Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], offset: float = 0.0) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse #
- static from_serializable(input: object) cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse #
- get_linear(*args, **kwargs)#
Overloaded function.
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, arg0: Tuple[int, int, int, int]) -> float
get_linear(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) -> Dict[Tuple[int, int, int, int], float]
- get_num_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) int #
- get_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) float #
- get_quadratic(*args, **kwargs)#
Overloaded function.
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, arg0: Tuple[int, int, int, int], arg1: Tuple[int, int, int, int]) -> float
get_quadratic(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) -> Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float]
- get_variables(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) List[Tuple[int, int, int, int]] #
- get_vartype(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) cimod.cxxcimod.Vartype #
- interaction_matrix(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) scipy.sparse.csr_matrix[numpy.float64] #
- length(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) int #
- normalize(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, bias_range: Tuple[float, float] = (1.0, 1.0), use_quadratic_range: bool = False, quadratic_range: Tuple[float, float] = (1.0, 1.0), ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- remove_interaction(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, u: Tuple[int, int, int, int], v: Tuple[int, int, int, int]) None #
- remove_interactions_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]]) None #
- remove_offset(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) None #
- remove_variable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, v: Tuple[int, int, int, int]) None #
- remove_variables_from(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, variables: List[Tuple[int, int, int, int]]) None #
- scale(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse, scalar: float, ignored_variables: List[Tuple[int, int, int, int]] = [], ignored_interactions: List[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]] = [], ignored_offset: bool = False) None #
- to_ising(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) Tuple[Dict[Tuple[int, int, int, int], float], Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_qubo(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) Tuple[Dict[Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]], float], float] #
- to_serializable(self: cimod.cxxcimod.BinaryQuadraticModel_tuple4_Sparse) object #
- class cimod.cxxcimod.Vartype#
Members:
SPIN
BINARY
NONE
__init__(self: cimod.cxxcimod.Vartype, value: int) -> None
- __init__(self: cimod.cxxcimod.Vartype, value: int) None #
- __new__(**kwargs)#
- BINARY = <Vartype.BINARY: 1>#
- NONE = <Vartype.NONE: -1>#
- SPIN = <Vartype.SPIN: 0>#
- property name#
- property value#